Research shows OLED production costs could be slashed

A new generation of lighting products could soon be illuminating our homes and businesses after a group of European researchers demonstrated that the cost of producing flexible OLED panels can be reduced by over 90 percent.

OLEDs – organic light-emitting diodes – have long been touted as the future of lighting and display panels but until now the cost of production has scuppered mass adoption. The three-year Flexolighting project – led by Brunel University London and a consortium of partners including Marks & Spencer, Tata Steel and AIXTRON SE – suggests that by introducing novel manufacturing techniques and rethinking the complete supply chain, it’s possible to reduce the cost of producing thin, high-efficiency OLED lighting panels to the point where they could compare in price to traditional LEDs.

The new research, which will be made available to European manufacturers, could usher in a new era of low-cost, high-efficiency lighting products.

“Flexolighting essentially deconstructed the OLED panel and re-imagined it as a series of individual elements that together can be repackaged to realise cost-effective, environmentally-less harmful, and beautifully designed lighting solutions,” said Prof Poopathy Kathirgamanathan, Chair Professor in Electronic Materials Engineering at Brunel.

Backed by €4.4m from the European Union’s Horizon 2020 research and innovation programme, the group was set the ambitious challenge of reducing the cost of producing OLEDs down to around €1 per 100 lumens. The current position is around €15 per 100 lumens.

By introducing a number of innovative new techniques, such as ‘printing’ some of the OLED’s layers on to flexible steel rather than the more traditional glass, and using a newly developed ‘light extraction film’ to double the OLED’s illumination, the group achieved a potential cost of €1.20 per 100 lumens –  a 92 percent reduction in cost.

“We’ve pushed the state-of-the-art to achieve world firsts in processing technologies, used novel materials such as planarised flexible steel and developed transparent top contacts with metallic films,” said Prof Kathirgamanathan.

“We also proved thin film encapsulation and showed how effective light extraction can be.

“The result is a highly innovative concept. By breaking away from existing limitations, we now no longer need to rely on glass substrates and glass encapsulation – we can turn the OLED upside down, maintain conductivity with alternative anodes and cathodes, process the device in a new way and protect it with a thin film.

“The end product is one that can be formed into an infinite number of design choices, and it was all made possible with European expertise and know-how.”

Whilst no products have yet been released using the group’s new techniques, it’s expected that they will find application in a number of industries, from domestic and commercial lighting, to cars and wearable technology.

“Flexolighting is a very compelling proposition,” said Prof Kathirgamanathan, “and one that, thanks to the commercial success of OLED displays in the consumer electronics sector, is very easy to envisage becoming commercially fruitful in its own right.”

Lifetime (hrs)800500050005000020000
Efficiency (lm/W)8-1020-3050-6060-8040-100


Be the first to comment

Leave a Reply

Your email address will not be published.